# BRITISH GEOLOGICAL SURVEY M onthly Magnetic Bulletin 

 Hartland Observatory

## December 2005

## 05/12/HA



## \section*{} <br> HARTLAND POINT F



British
Geological Survey

## 1. HARTLAND OBSERVATORY MAGNETIC DATA

### 1.1 Introduction

This bulletin is published to meet the needs of both commercial and academic users of geomagnetic data. Magnetic observatory data is presented as a series of plots of one-minute, hourly and daily values, followed by tabulations of monthly values, geomagnetic activity indices and reports of rapid variations. The operation of the observatory and presentation of data are described in the rest of this section.

Enquiries about the data should be addressed to:

National Geomagnetic Service<br>British Geological Survey<br>Murchison House, West Mains Road Edinburgh EH9 3LA<br>Scotland, UK<br>Tel: $\quad+44(0) 1316671000$<br>Fax: $\quad+44(0) 1316684368$<br>E-mail: o.baillie@bgs.ac.uk<br>Internet: www.geomag.bgs.ac.uk

### 1.2 Position

Hartland Observatory, one of the three geomagnetic observatories operated and maintained in the UK by BGS, is situated on the NW boundary of the village of Hartland in North Devon. The observatory coordinates are:

Geographic: $\quad 50^{\circ} 59.7^{\prime} N \quad 355^{\circ} 31.0^{\prime} \mathrm{E}$
$\begin{array}{ll}\text { Geomagnetic: } & 53^{\circ} 53.7^{\prime} \mathrm{N} \\ & 080^{\circ} 09.4^{\prime} \mathrm{E}\end{array}$
Height above mean sea level: $\quad 95 \mathrm{~m}$
The geomagnetic co-ordinates are calculated using the 10th generation International Geomagnetic Reference Field at epoch 2005.5.

### 1.3 The Observatory Operation

### 1.3.1 GDAS

The observatory operates under the control of the Geomagnetic Data Acquisition System (GDAS), which was developed by BGS staff, installed in 2002, and became fully operational in January 2003. The system operates under the control of data acquisition software running on QNX computers, which control the data logging and communications.

There are two sets of sensors used for making magnetic measurements. A tri-axial linear-core fluxgate magnetometer, manufactured by the Danish Meteorological Institute, is used to measure the variations in the horizontal $(H)$ and vertical ( $Z$ ) components of the field. The third sensor is oriented perpendicular to these, and measures variations, which are proportional to the changes in declination (D). Measurements are made at a rate of 1 Hz .

In addition to the fluxgate sensors there is a proton precession magnetometer making measurements of the absolute total field intensity $(F)$ at a rate of 0.1 Hz .

The raw unfiltered data are retrieved automatically via Internet connections to the BGS office in Edinburgh in near real-time. The fluxgate data are filtered to produce one-minute values using a 61point cosine filter whilst the total field intensity samples are filtered using a 7-point cosine filter. These one-minute values are used to update the Geomagnetism Information and Forecast Service (GIFS), an on-line information system accessed via the World Wide Web at the address given in Section 1.1. GIFS also provides information on geomagnetic and solar activity.

### 1.3.2 Back-up Systems

There are two other fully independent identical systems, GDAS 2 and GDAS 3, operating at the observatory. The data from these are also processed in near real-time and used for quality control purposes. They can also be used to fill any gaps or replace any corrupt values in the primary system, GDAS 1.

### 1.4 Data Presentation

The data presented in the bulletin are in the form of plots and tabulations described in the following sections.

### 1.4.1 Summary magnetograms

Small-scale magnetograms are plotted which allow the month's data to be viewed at a glance. They are plotted 16 days a page and show the variations in $D$, $H$ and Z . The scales are shown on the right-hand side of the page. On disturbed days the scales are multiplied by a factor, which is indicated above the panel for that day. The variations are centred on the monthly mean value, shown on the left side of the page.

### 1.4.2 Magnetograms

The daily magnetograms are plotted using oneminute values of $D, H$ and $Z$ from the fluxgate sensors, with any gaps filled using back-up data. The magnetograms are plotted to a variable scale; scale bars are shown to the right of each plot. The absolute level (the monthly mean value) is indicated on the left side of the plots.

### 1.4.3 Hourly Mean Value Plots

Hourly mean values of $D, H$ and $Z$ for the past 12 months are plotted in 27-day segments corresponding to the Bartels solar rotation number. Magnetic disturbances associated with active regions on the surface of the Sun may recur after 27 days: the same is true for geomagnetically quiet intervals. Plotting the data in this way highlights this recurrence, and also illustrates seasonal and diurnal variations throughout the year.

### 1.4.4 Daily and Monthly Mean Values

Daily mean values of $D, H, Z$ and $F$ are plotted throughout the year. In addition, a table of monthly mean values of all the geomagnetic elements is provided. These values depend on accurate specification of the fluxgate sensor baselines. Provisional and definitive values are indicated in the table as $\mathbf{P}$ or $\mathbf{D}$ respectively. It is anticipated that provisional values will not be altered by more than a few nT or tenths of arcminutes before being made definitive.

### 1.4.5 Geomagnetic activity indices

The Observatory $K$ index. This summarises geomagnetic activity at an observatory by assigning a code, an integer in the range 0 to 9 , to each 3-hour Universal Time (UT) interval. The index for each 3hour UT interval is determined from the ranges in $H$ and in $D$ (scaled in nT ), with allowance made for the regular (undisturbed) diurnal variation. The conversion from range to an index value is made using a quasi-logarithmic scale, with the scale values dependent on the geomagnetic latitude of the observatory. The $K$ index retains the local time (LT) and seasonal dependence of activity associated with the position of the observatory.

The provisional aa index. A number of 3-hour geomagnetic indices are computed by combining $K$ indices from networks of observatories to characterise global activity levels and to eliminate LT and seasonal effects. The simplest of these is the $a a$ index, computed using the $K$ indices from two approximately antipodal observatories: Hartland in the UK and Canberra in Australia. The aa index is calculated from linearisations of the Hartland and Canberra $K$ indices, and has units of nT. The daily
mean value of $a a$ (denoted $A a$ ), the mean values of $a a$ for the intervals $00-12 \mathrm{UT}$ and $12-24 \mathrm{UT}$ and the daily mean values for Hartland alone $\left(A a_{n}\right)$ and Canberra alone $\left(A a_{s}\right)$ are tabulated.

Although the $a a$ index is based on data from only two observatories, provided averages over 12 hours or longer are used, the index is strongly correlated with the $a p$ and $a m$ indices, which are derived using data from more extensive observatory networks.

The $a a$ indices listed in this publication are provisional only; the definitive values are published by the International Service for Geomagnetic Indices, CRPE/CNET - CNRS, 4 Avenue de Neptune, F-94107 Saint Maur Cedex, France.

### 1.4.6 Rapid Variations

Charged particles stream from the Sun in the solar wind. The solar wind interacts with the geomagnetic field to create a cavity, the magnetosphere, in which the field is confined. When a region of enhanced velocity and/or density in the solar wind arrives at the day-side boundary of the magnetosphere (at about 10 earth radii) the boundary is pushed towards the Earth. Currents set up on the boundary of the magnetosphere can cause an abrupt change in the geomagnetic field measured on the ground and this is recorded on observatory magnetograms as a Sudden Impulse (SI). If, following an SI, there is a change in the rhythm of activity, the SI is termed a Storm Sudden Commencement (SSC). A classical magnetic storm exhibiting initial, main and recovery phases (shown by, for instance, the Dst ring current index) can often occur after a SSC, in which case the start of the storm is taken as the time of the SSC.

Solar flares, seen at optical wavelengths as a sudden brightening of a small region of the Sun's surface, are also responsible for increased X-ray emissions. The X-rays cause increased ionisation in the ionosphere, which leads to absorption of short-wave radio signals. On an observatory magnetogram a Solar Flare Effect (SFE), or "crochet" may be observed. This is an enhancement to the diurnal variation of the order of 10 nT , lasting about an hour.

This product includes mapping data licensed from Ordnance Survey with the permission of HMSO © Crown copyright. All rights reserved.
Licence Number: 100017897/2004
© NERC 2005




Date: 02-12-2005
Day number: 336



Date: 04-12-2005
Day number: 338



Date: 06-12-2005
Day number: 340



Date: 08-12-2005
Day number: 342



Date: 10-12-2005
Day number: 344



Date: 12-12-2005
Day number: 346



Date: 14-12-2005
Day number: 348



Date: 16-12-2005
Day number: 350



Date: 18-12-2005
Day number: 352



Date: 20-12-2005
Day number: 354



Date: 22-12-2005
Day number: 356



Date: 24-12-2005
Day number: 358



Date: 26-12-2005
Day number: 360



Date: 28-12-2005
Day number: 362



Date: 30-12-2005
Day number: 364


(


Hartland Observatory: Vertical Intensity (nT)
(44200


Monthly Mean Values for Hartland Observatory 2005

| Month | D | H |  |  | $X$ | $Y$ | Z | $F$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | $-3^{\circ} 59.8^{\prime}$ | 19559 nT | $66^{\circ}$ | 7.1' | 19511 nT | -1363 nT | 44176 nT | 48312 nT |
| February | $-3^{\circ} 59.9^{\prime}$ | 19572 nT | $66^{\circ}$ | 6.1' | 19524 nT | -1365 nT | 44171 nT | 48313 nT |
| March | $-3^{\circ} 59.1^{\prime}$ | 19577 nT | $66^{\circ}$ | 5.7' | 19529 nT | -1360 nT | 44168 nT | 48312 nT |
| April | $-3^{\circ} 58.3^{\prime}$ | 19581 nT | $66^{\circ}$ | 5.4' | 19534 nT | -1356 nT | 44166 nT | 48312 nT |
| May | $-3^{\circ} 57.2^{\prime}$ | 19573 nT | $66^{\circ}$ | 6.2' | 19527 nT | -1349 nT | 44175 nT | 48317 nT |
| June | $-3^{\circ} 56.6^{\prime}$ | 19580 nT | $66^{\circ}$ | 5.8' | 19534 nT | -1346 nT | 44177 nT | 48321 nT |
| July | -3 ${ }^{\circ} 56.0^{\prime}$ | 19582 nT | $66^{\circ}$ | 5.6' | 19536 nT | -1343 nT | 44176 nT | 48322 nT |
| August | -30 55.3' | 19578 nT | $66^{\circ}$ | 5.9' | 19532 nT | -1339 nT | 44178 nT | 48322 nT |
| September | -3 ${ }^{\circ} 54.4{ }^{\prime}$ | 19568 nT | $66^{\circ}$ | 6.9' | 19522 nT | -1333 nT | 44187 nT | 48326 nT |
| October | -3 ${ }^{\circ} 54.1^{\prime}$ | 19580 nT | $66^{\circ}$ | 5.9' | 19535 nT | -1332 nT | 44183 nT | 48327 nT |
| November | $-3^{\circ} 53.3^{\prime}$ | 19582 nT | $66^{\circ}$ | 5.8' | 19537 nT | -1328 nT | 44184 nT | 48329 nT |
| December | $-3^{\circ} 52.6^{\prime}$ | 19586 nT | $66^{\circ}$ | $5.6{ }^{\prime}$ | 19541 nT | -1324 nT | 44185 nT | 48331 nT |

## Note

i. The values shown here are provisional.

## HARTLAND RAPID VARIATIONS

## SIs and SSCs

| Date | Time (UT) | Type | Quality | H (nT) | D (min) | Z (nT) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $09-12-05$ | $17 \quad 15$ | SSC* $^{*}$ | C | -6.8 | 0.28 | -1.8 |

## Notes:

An asterisk (*) indicates that the principal impulse was preceded by a smaller reversed impulse.
The quality of the event is classified as follows:
$\mathrm{A}=$ very distinct
B = fair, ordinary, but unmistakable
C = doubtful
The amplitudes given are for the first chief movement of the event.

SFEs

| Date | Start | Universal Time <br> Maximum | End | H (nT) | D (min) | Z (nT) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  |  | NONE |  |  |  |  |

## Note:

The amplitudes given are for the first chief movement of the event.

The K Index
Hartland Observatory
December 2005

| Day | K - INDICES FOR THREE-HOUR INTERVAL |  |  |  |  |  |  |  | SUM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 00-03 | 03-06 | 06-09 | 09-12 | 12-15 | 15-18 | 18-21 | 21-24 |  |
| 1 | 4 | 2 | 1 | 2 | 3 | 2 | 4 | 4 | 22 |
| 2 | 3 | 3 | 3 | 3 | 2 | 2 | 3 | 4 | 23 |
| 3 | 3 | 2 | 1 | 2 | 2 | 4 | 4 | 3 | 21 |
| 4 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 1 | 12 |
| 5 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 5 |
| 6 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 3 |
| 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 8 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 |
| 9 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 4 | 11 |
| 10 | 3 | 4 | 3 | 1 | 1 | 2 | 4 | 4 | 22 |
| 11 | 4 | 2 | 2 | 3 | 2 | 4 | 5 | 3 | 25 |
| 12 | 3 | 3 | 2 | 1 | 2 | 3 | 4 | 3 | 21 |
| 13 | 1 | 1 | 0 | 1 | 2 | 0 | 3 | 2 | 10 |
| 14 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 3 |
| 15 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 4 |
| 16 | 2 | 3 | 1 | 1 | 1 | 2 | 2 | 1 | 13 |
| 17 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 6 |
| 18 | 2 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 6 |
| 19 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 16 |
| 20 | 4 | 3 | 2 | 1 | 3 | 3 | 5 | 3 | 24 |
| 21 | 1 | 2 | 2 | 2 | 3 | 3 | 1 | 2 | 16 |
| 22 | 3 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 9 |
| 23 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 24 | 0 | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 9 |
| 25 | 2 | 2 | 1 | 1 | 2 | 2 | 0 | 1 | 11 |
| 26 | 0 | 0 | 1 | 0 | 1 | 1 | 3 | 4 | 10 |
| 27 | 3 | 1 | 0 | 1 | 3 | 5 | 5 | 6 | 24 |
| 28 | 3 | 2 | 3 | 2 | 2 | 2 | 3 | 4 | 21 |
| 29 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 19 |
| 30 | 2 | 3 | 2 | 3 | 1 | 2 | 2 | 3 | 18 |
| 31 | 3 | 2 | 2 | 0 | 3 | 3 | 3 | 4 | 20 |


| Lower bound (nT) for the range for each index value at Hartland Observatory |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 0 | 5 | 10 | 20 | 40 | 70 | 120 | 200 | 330 | 500 |

The aa Index

| Date | Day | K-North | K-South | (a) | (b) | (c) | (d) | (e) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01-12-05 | 335 | 42123244 | 33232224 | 33 | 28 | 26 | 34 | 30 |
| 02-12-05 | 336 | 33332234 | 33323222 | 31 | 24 | 30 | 25 | 28 |
| 03-12-05 | 337 | 32122443 | 32133232 | 29 | 23 | 20 | 33 | 26 |
| 04-12-05 | 338 | 11112231 | 11113122 | 13 | 13 | 8 | 18 | 13 |
| 05-12-05 | 339 | 11011010 | 11010011 | 6 | 6 | 6 | 5 | 6 |
| 06-12-05 | 340 | 00001011 | 02111000 | 4 | 6 | 6 | 5 | 5 |
| 07-12-05 | 341 | 00000000 | 00100000 | 2 | 3 | 3 | 2 | 3 |
| 08-12-05 | 342 | 00000011 | 00000001 | 4 | 3 | 2 | 4 | 3 |
| 09-12-05 | 343 | 10101224 | 11111213 | 15 | 12 | 6 | 20 | 13 |
| 10-12-05 | 344 | 34311244 | 24212222 | 34 | 21 | 29 | 26 | 27 |
| 11-12-05 | 345 | 42232453 | 12332443 | 41 | 32 | 26 | 47 | 37 |
| 12-12-05 | 346 | 33212343 | 23212322 | 28 | 19 | 20 | 27 | 24 |
| 13-12-05 | 347 | 11012032 | 11103112 | 11 | 11 | 6 | 16 | 11 |
| 14-12-05 | 348 | 00100011 | 12211011 | 4 | 9 | 8 | 6 | 7 |
| 15-12-05 | 349 | 10110001 | 12121000 | 5 | 8 | 9 | 4 | 7 |
| 16-12-05 | 350 | 23111221 | 13223231 | 14 | 20 | 17 | 17 | 17 |
| 17-12-05 | 351 | 01111101 | 01033002 | 6 | 12 | 9 | 10 | 9 |
| 18-12-05 | 352 | 21011001 | 21122101 | 7 | 10 | 10 | 7 | 9 |
| 19-12-05 | 353 | 11112244 | 21223323 | 22 | 21 | 11 | 33 | 22 |
| 20-12-05 | 354 | 43213353 | 23224332 | 39 | 28 | 24 | 42 | 33 |
| 21-12-05 | 355 | 12223312 | 11223311 | 18 | 16 | 13 | 21 | 17 |
| 22-12-05 | 356 | 31110111 | 21210111 | 10 | 9 | 13 | 6 | 10 |
| 23-12-05 | 357 | 10000000 | 00100000 | 3 | 3 | 4 | 2 | 3 |
| 24-12-05 | 358 | 00012222 | 01123111 | 10 | 11 | 6 | 15 | 11 |
| 25-12-05 | 359 | 22112201 | 13333111 | 11 | 20 | 19 | 12 | 16 |
| 26-12-05 | 360 | 00101134 | 01122222 | 15 | 12 | 6 | 21 | 14 |
| 27-12-05 | 361 | 31013556 | 22123443 | 57 | 30 | 13 | 73 | 43 |
| 28-12-05 | 362 | 32322234 | 32233223 | 27 | 24 | 24 | 27 | 26 |
| 29-12-05 | 363 | 42222223 | 22322212 | 23 | 17 | 23 | 17 | 20 |
| 30-12-05 | 364 | 23231223 | 23221111 | 21 | 14 | 22 | 13 | 17 |
| 31-12-05 | 365 | 32203334 | 22213322 | 27 | 19 | 15 | 31 | 23 |
| Monthly mean value = |  |  | 17.1 |  |  |  |  |  |

(a) The northern daily mean value, $\mathrm{Aa}_{\mathrm{n}}$
(b) The southern daily mean value, $\mathrm{Aa}_{\mathrm{s}}$
(c) The mean value of aa for the interval 00-12 UT
(d) The mean value of aa for the interval 12-24 UT
(e) The daily mean value of aa (Aa)

## Notes

i. The values are rounded to the nearest integer.
ii. The units of the aa index are nT.
iii. The values shown here are provisional. The definitive values are computed and published by the International Service for Geomagnetic Indices, Paris

